Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1884210

ABSTRACT

This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.


Subject(s)
COVID-19 , Cannabinoids , Angiotensin II/metabolism , Cannabinoids/pharmacology , Endocannabinoids/pharmacology , Humans , Receptor, Angiotensin, Type 1/metabolism , Receptors, Angiotensin/metabolism , Receptors, Cannabinoid , Renin/pharmacology , Renin-Angiotensin System
2.
Sci Rep ; 12(1): 4963, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1758374

ABSTRACT

Problematic alcohol use is a major contributor to the global burden of death and disabilities, and it represents a public health concern that has grown substantially following the COVID-19 pandemic. The available treatment options remain limited and to develop better pharmacotherapies for alcohol misuse we need to identify suitable biological targets. Previous research has implicated the brain's endocannabinoid system (ECS) in psychiatric and stress-related outcomes, including substance use and habituation to repeated stress. Moreover, genetic variants in the cannabinoid-1 receptor gene (CNR1; CB1R) have been associated with personality traits, which are in turn predictors of substance use disorders. To date, however, no human genome-wide association study has provided evidence for an involvement of the ECS in substance use outcomes. One reason for this ECS-related "missing heritability" may be unexamined gene-environment interactions. To explore this possibility, we conducted cross-sectional analyses using DNA samples and stress-exposure data from a longitudinal Swedish population-based study (N = 2,915). Specifically, we genotyped rs2023239, a functional C/T single nucleotide polymorphism in CNR1, previously reported to be associated with CNR1 binding in the brain, subjective reward following alcohol intake, and alcohol cue-elicited brain activation. Our two outcomes of interest were (i) problematic alcohol use based on the Alcohol Use Disorders Identification Test (AUDIT), and (ii) personality trait scores based on the Five Factor Model. We found no baseline association between rs2023239 and problematic alcohol use or personality traits. However, there was a clear trend for interaction between rs2023239's risk allele (C) and stressful life events (SLEs) in both childhood and adulthood, which predicted problematic alcohol use. Although not significant, there was also some indication that the risk allele interacted with child SLEs to increase scores on neuroticism. Our study supports the notion that the ECS can affect alcohol intake behaviors by interacting with life adversities and is-to the best of our knowledge-the first to focus on the interaction between CNR1 and stressors in both childhood and adulthood in humans. Further studies are warranted to confirm these findings.


Subject(s)
Alcoholism , COVID-19 , Adult , Alcohol Drinking/genetics , Alcohol Drinking/psychology , Alcoholism/genetics , Alcoholism/psychology , Child , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Pandemics , Receptors, Cannabinoid
3.
Eur J Pharmacol ; 911: 174560, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1458663

ABSTRACT

The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.


Subject(s)
Cannabinoids/pharmacology , Endocannabinoids/metabolism , Respiratory Tract Diseases/drug therapy , Animals , Cannabinoids/administration & dosage , Enzyme Inhibitors/pharmacology , Humans , Models, Biological , Receptors, Cannabinoid/immunology , Receptors, Cannabinoid/metabolism , Respiratory Tract Diseases/metabolism , COVID-19 Drug Treatment
4.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1299439

ABSTRACT

The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.


Subject(s)
Endocannabinoids/metabolism , Metabolic Networks and Pathways , Receptors, Cannabinoid/metabolism , Animals , Appetite Regulation , Carbohydrate Metabolism , Endocannabinoids/immunology , Humans , Lipid Metabolism , Neoplasms/etiology , Neoplasms/metabolism , Respiration Disorders/immunology , Respiration Disorders/metabolism
5.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: covidwho-1067750

ABSTRACT

Recently, there has been a growing interest in the medical applications of Cannabis plants. They owe their unique properties to a group of secondary metabolites known as phytocannabinoids, which are specific for this genus. Phytocannabinoids, and cannabinoids generally, can interact with cannabinoid receptors being part of the endocannabinoid system present in animals. Over the years a growing body of scientific evidence has been gathered, suggesting that these compounds have therapeutic potential. In this article, we review the classification of cannabinoids, the molecular mechanisms of their interaction with animal cells as well as their potential application in the treatment of human diseases. Specifically, we focus on the research concerning the anticancer potential of cannabinoids in preclinical studies, their possible use in cancer treatment and palliative medicine, as well as their influence on the immune system. We also discuss their potential as therapeutic agents in infectious, autoimmune, and gastrointestinal inflammatory diseases. We postulate that the currently ongoing and future clinical trials should be accompanied by research focused on the cellular and molecular response to cannabinoids and Cannabis extracts, which will ultimately allow us to fully understand the mechanism, potency, and safety profile of cannabinoids as single agents and as complementary drugs.


Subject(s)
Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Cannabinoids/chemistry , Cannabis/chemistry , Chemistry Techniques, Synthetic , Communicable Diseases/drug therapy , Communicable Diseases/microbiology , Communicable Diseases/virology , Humans , Immune System/drug effects , Immune System/immunology , Immune System/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Neoplasms/drug therapy , Receptors, Cannabinoid/metabolism
6.
Int J Mol Sci ; 22(2)2021 Jan 14.
Article in English | MEDLINE | ID: covidwho-1030147

ABSTRACT

Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes. The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson's disease, Tourette's syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors. The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.


Subject(s)
Cannabinoids/pharmacology , Cannabis/chemistry , Drug Discovery , Phytochemicals/pharmacology , Terpenes/pharmacology , Animals , Cannabinoids/chemistry , Cannabinoids/therapeutic use , Drug Synergism , Endocannabinoids/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Receptors, Cannabinoid/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Terpenes/chemistry , Terpenes/therapeutic use , Tourette Syndrome/drug therapy , Tourette Syndrome/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL